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Abstract. For standard 2D bond percolation, the size of regions trapped by the infinite 
occupied cluster at bond density p is studied by Monte Carlo simulations. It is known 
that there is a transition at some density p ,  > 1/2 which determines the fractal behaviour 
of invasion percolation with trapping. The numerical results are that p,=0.520 and the 
critical exponents are those ( y = 43/18 and U = 4/3) of the usual percolation transition at 
p c =  1/2. Thus invasion percolation with trapping does not appear to belong to a new 
universality class. 

In this paper we report the results of a Monte Carlo study of the ‘trapping transition’ 
in standard bond percolation on the 2~ square lattice. As explained below, this 
transition occurs as the mean size of regions trapped by the infinite occupied cluster 
diverges when the bond density p is lowered to a critical value pt within the percolating 
phase. One reason for interest in this transition is its relation to invasion percolation 
(with trapping). 

Invasion percolation is a dynamic growth model originally invented for the study 
of two-fluid interfaces in a porous medium (Lenormand and Bories 1980, Chandler et 
a1 1982). Random numbers between 0 and 1 are assigned independently to the bonds 
of the lattice. The displacing fluid (which is initially located, say, at the origin) chooses 
at each time step the path of least resistance by invading that bond on the boundary 
of the currently invaded region with the smallest random number. The large-time 
fractal behaviour of this version of invasion percolation (i.e. without trapping) has 
been shown (Wilkinson and Willemsen 1983, Willemsen 1984, Nickel and Wilkinson 
1983, Wilkinson and Barsony 1984, Chayes et all985) both numerically and analytically 
to be controlled by the usual critical point p = p c  of standard (static) percolation. A 
more interesting version of invasion percolation adds a trapping rule, which forbids 
invasion into any region which is completely trapped by invaded bonds. A region 
becomes trapped when any path to infinity must pass through some already invaded 
bond. The trapping rule represents physically the incompressibility of the displaced 
fluid. 

In Wilkinson and Willemsen (1983) and Willemsen (1984), 2~ and 3~ simulations 
of invasion percolation with trapping were performed in which the invasion was 
continued until all bonds in the finite simulation volume were either invaded or trapped. 
It was thought that, in this situation, the random numbers of invaded bonds (asymptoti- 
cally) include values up to but not beyond 1-p,-compared with p c  for invasion 
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percolation without trapping. The numerical results then led to two conclusions: first, 
that the 2~ situation was degenerate since pc  = 1 - p c  and, second, that the 3~ fractal 
behaviour, in spite of being related to the critical point 1 - p c  for percolating vacant 
bonds, corresponded to a new universality class different from the usual percolation 
phase transition. This was of considerable interest since it supported the notion that 
dynamical models could exhibit novel critical behaviour (Kadanoff 1989). 

However, the first conclusion was disproved and the second conclusion cast in 
some doubt by subsequent theoretical work of Chayes et a1 (unpublished). They 
showed that bonds with random numbers up to the trapping transition density pt are 
invaded, and proved that at least for ZD, pt> 1 - p c .  Their work indicates that for any 
dimension, no new universality class occurs for invasion percolation with trapping if 
it does not occur for the static trapping transition at pt, and, further, that in this respect 
2~ is not degenerate. The main purpose of this paper is then to numerically investigate 
whether the 2~ trapping transition does or does not represent a new universality class. 
If it does not, there is no reason to believe that a new universality class will appear 
for any higher dimension. We note that the study of trapping in a static percolation 
model has a major advantage over its dynamic counterpart-it is much simpler to 
simulate. 

To define the trapping tranisition more pecisley, start with a standard bond percola- 
tion model on a d-dimensional cubic lattice. At any bond density p ,  ‘remove’ from 
the lattice all those bonds (but not the sites) which are a part of the infinite occupied 
cluster. A trap is then defined as a connected component of what remains of the lattice. 
For p close to 1, all traps will be finite. As p is lowered, the trapping transition occurs 
at the value pt below which there is an infinite trap. Below pt, there is a non-zero 
probability for the existence of a path from the origin to infinity consisting entirely of 
vacant bonds and bonds belonging to finite occupied clusters; in this region the infinite 
occupied cluster does not trap all the rest of the lattice. 

For any dimension d, it is clear that there will be an infinite trap for all p < 1 - p c ,  
since then vacant bonds percolate; thus p t a  1 - p c .  It has been proved that pt> 1 -pc  
first for d = 2  (Chayes et al, unpublished) and then for general d (Aizenman and 
Grimmett 1989). Another quantity of interest is xt(p), the mean number of sites in 
the trap containing the origin. The main questions which we have addressed for d = 2 
are the numerical value of pt (by how much does it exceed 1 - p c  = 1/2?) and the critical 
behaviour of the trapping transition (is it different from the usual percolation transi- 
tion?). The critical exponent y, for example, is defined by x , ( p )  - ( p  -pJY as p k p , ;  
the analogous exponent for the usual 2~ percolation transition has the exact value 
43/18 (den Nijs 1979, Nienhuis er a1 1980, Pearson 1980). By analysing numerical 
data for x , ( p )  at different lattice sizes, we are able to test whether both y and the 
correlation length exponent v are the same for the trapping transition as for the usual 
percolation transition. 

We have studied trapping via 2~ numerical simulations on a square lattice with L 
sites to a side. All simulations were performed on a Sun 3 workstation. The simulation 
procedure is as follows. Given a value of p ,  first identify the occupied bonds as those 
random numbers below p .  Next, identify the set Z, which consists of all bonds belonging 
to occupied clusters which reach the boundary of the lattice. Finally identify T, the 
collection of all those connected components of bonds in the complement of Z which 
intersect a square R centred on the origin with L/4 sites to a side. Z represents (in 
fact overestimates) the set of bonds in the Lx L lattice from the infinite occupied 
cluster, while T represents the set of traps which come ‘close’ to the origin. We use 
T rather than just the trap of the origin in order to improve the statistics of trap sizes. 
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Studying invasion percolation with trapping indirectly through the trapping 
transition has several notable numerical advantages. We work in a completely static 
model, which can be easily simulated whereas invasion percolation itself is rather more 
difficult to simulate. More importantly, searching for trapped regions in invasion 
percolation is a time consuming task, both because it must be carried out at every time 
step, and because inclusion in a trapped region is not a local property. In our algorithm, 
finding whether a trap reaches the boundary of the lattice is a trivial by-product of 
counting its size. 

We conducted 2~ simulations for L = 50, 100, 200, and 350. The range of p values 
used depended on the size of the lattice, and the increment between p values was 
generally 0.001. The overall range of p values across all lattice sizes was from 0.51 to 
0.60. The main quantity which we measured was the mean trap size (for traps in T) 
xt(p, L). The appendix lists the measured values for this quantity along with error 
brackets (as explained in detail below). A graph showing the dependence of the mean 
trap size on L and p is given in figure 1. To analyse our data we used finite-size scaling 
methods (see, e.g., Barber 1983). Given L and the critical exponents y and v (for the 
infinite lattice), the finite-size scaling ansatz is that 

xtb, L )  = L”yf((P -POL””) 

for some fixed scaling function f (independent of L ) .  Taking the numerical values of 
xt( p ,  L) for a given L and varying p,  one can invert this equation to obtain a numerical 
estimate of the function which we denote by fL. Of course fL depends on the choice 
of pt, y and I/. We plotted the functions fL for all four lattice sizes on a single graph 
for various values of pt , y and v. When the values of p t  , y and v are ‘correct,’ all the 
data should lie on one curve. To decide whether the trapping transition is in the same 

I I I , 
0. 52 0 . 5 4  0 . 5 6  0.58 0.60 

P 
Figure 1. A graph of xt, the mean trap size, against p ,  the density of occupied bonds, for 
four different lattice sizes L . The square data points are for L = 50, the octagons for 
L =  100, the triangles for L = 2 0 0  and the crosses for L = 3 5 0 .  The vertical scale is 
logarithmic. 
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universality class as standard percolation we first set y = 43/ 18 and v = 4/3 and graphed 
the fL for a range of pt values. The best fit occurred with p t  = 0.520 (see figure 2). As 
we varied p t ,  y and v from these values, the fit deteriorated. See figures 3, 4 and 5 
for examples. The data are clearly consistent with the ‘null hypothesis’ that the trapping 
transition is in the same universality class as the standard percolation transition. 

I +  

-1 0 1 2 
( p  - 4 1  L ‘ ‘ y  

Figure 2. A graph of ,y,L-”’ against ( p  - p J L ” ”  for L = 50 (squares), 100 (octagons), 200 
(triangles) and 350 (crosses). Here y = 43/18 i= 2.39, I, = 4/3 = 1.33 and pt = 0.520. Vertical 
error bars of i one standard deviation are included for every other data point. 

For a given p and L, the numerical estimates of ,yt( p ,  L) are averages over different 
simulation runs (denoted w )  of j ( w ) ,  the weighted average of the sizes of traps in T: 

where for the run 0, 9 ( x ,  w )  is the number of sites in the trap containing x when the 
trap belongs to T (and otherwise F(x,  w )  = 0). For a given run 0, these trap sizes are 
not independent. However, the are independent for different runs; thus we estimate 
error brackets for x t ( p ,  L) by taking the usual sample standard deviation for the data 
consisting of the different , f (w) .  The number of runs varied from 100 to 1000. Sample 
error brackets appear in figure 2; more complete information is given in the appendix. 

Another feature of our simulation procedure allowed us to use the same random 
numbers (used in determining bond occupation) for many different values of p. To 
do this we simply kept track of the set I, and added bonds to it as we increased the 
value of p .  This procedure forces the trap sizes to be monotonic in p for each run. 
While this procedure should not decrease the statistical error for a single x t ( p ,  L) or 
fL value, it certainly makes these values for different p dependent and apparently 
smoothes the data. Perhaps this helps explain why the fit between the fourf, (which 
are independent) in figure 2 seems to somewhat exceed the accuracy suggested by the 
error brackets. 
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Figure 3. The same graph as figure 2 except that pt has been changed from 0.520 to 0.522. 
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Figure 5. The same graph as figure 2 except that Y has been changed from 1.34 to 1.28. 

In conclusion, we have presented evidence that invasion percolation with trapping 
is in the same universality class as the regular percolation transition. This evidence 
comes from studying numerically the static percolation analogue, the trapping transi- 
tion, and showing, at least in 2 ~ ,  that it is in the same universality class as regular 
percolation. 
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Appendix 

x,( p ,  L) 1 one standard deviation 

P L=50 L =  100 L = 200 L = 350 

0.510 
0.51 1 
0.512 
0.513 

15 354.0* 349.9 52 113.01 1044.0 
14 422.013342.5 48 780.0f 1060.0 
13 504.01338.0 45 220.0 f 1107.0 
12 439.0*344.2 41 807.0f 1106.0 
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,y,( p, L) f one standard deviation 

P L=50 L =  100 L=200 L = 350 

0.514 
0.515 
0.516 
0.517 
0.518 
0.519 
0.520 
0.521 
0.522 
0.523 
0.524 
0.525 
0.526 
0.527 
0.528 
0.529 
0.530 
0.531 
0.532 
0.533 
0.534 
0.535 
0.536 
0.537 
0.538 
0.539 
0.540 
0.541 
0.542 
0.543 
0.544 
0.545 
0.546 
0.547 
0.548 
0.549 
0.550 
0.551 
0.552 
0.553 
0.554 
0.555 
0.556 
0.557 
0.558 
0.559 
0.560 
0.561 
0.562 
0.563 
0.564 
0.565 
0.566 
0.567 

227.11 k6.218 
218.53 f6.009 
207.39i 5.610 
199.47 i 5.470 
190.98 i 5.300 
182.32i5.100 
174.87i4.911 
168.47 i4.761 
161.541 4.577 
155.15i4.415 
148.54f4.300 
143.11 14.174 

129.82 f 3.790 
124.241 3.666 
120.00f 3.604 
114.71 53.464 
110.40i 3.371 
105.84 i 3.289 
100.88 * 3.082 
96.721 * 2.978 

88.885 f 2.750 
85.467 k2.658 

136.82 i 4.005 

92.607 f 2.858 

81.5801 2.561 
78.282 i 2.338 
75.869 i 2.279 
72.705 * 2.196 

1787.1 165.40 
1674.5 f 63.53 
1576.1 161.78 
1469.5 * 59.82 
1358.4f 56.00 
1279.7 f 53.92 
121 1 .O * 5 1.89 
11 16.6147.27 
1036.6 i43.57 
975.29 141.91 
911.89f39.99 

788.76i36.71 
730.37k34.38 
685.01 i32.47 
641.47 f 3 1.54 
602.44i30.51 
551.71 127.31 
514.22 i 26.39 
478.07 1 24.70 
446.90f 22.80 
413.37 i 21.51 
387.87 f 20.47 
364.19* 19.36 
335.001 17.64 
305.421 15.20 
287.84 f 14.23 
269.78f 13.54 
249.68 f 12.25 
236.08 i 11.70 
216.92f 10.79 
206.48 i 10.45 
191.86 f9.041 
183.02f8.872 
170.55 f 7.970 
162.92 i 7.688 
153.261 7.216 

139.13 i 6.688 

124.14f6.112 
114.82 i 5.333 
107.94 f4.953 
101.26 i 4.628 

849.142 38.69 

145.50f6.834 

130.41 f6.321 

97.189i 4.476 
92.1 12 *4.196 
88.415 * 4.029 
84.597 f 3.888 

11 474.0f335.6 
10 535.0i331.2 
9 608.8*319.8 
8 669.3 * 313.5 
7 826.3 i 307.0 
7 060.2 * 284.9 
6 251.7i262.1 
5 658.7 i 245.0 
5 155.6f228.0 
4639.31213.3 
4 098.3 f 202.2 
3 570.5f 182.2 
3 155 .6 i  167.3 
2 754.2* 151.7 
2 440.4i 136.3 
2 165.51 120.6 
1 938.7 f 106.1 
1 729.3 k97.69 
1537.4f90.38 
1411.3f86.16 
1 259.8 f 78.82 
1 128.8 f 70.37 
1015.0i62.58 

923.98 i 57.65 
843.13153.79 
762.97 i 48.30 
693.72f45.21 
626.04 f 42.10 
552.59 f 36.36 
501.07*34.45 
457.48i 31.39 
425.141 30.10 
394.34 f 28.07 
366.42f 27.16 
334.19f 23.50 
300.00 * 20.26 
266.26f 15.71 
249.17f 14.36 
233.98 f 13.23 
217.83i 11.64 
205.99i 11.13 
184.88 f9.139 
171.48i8.263 
160.06i 7.746 
148.21 17.184 
140.09i6.709 
132.12 i6 .196  

38 394.01 1176.0 
34 295.01 1260.0 
30 288.01 1234.0 
26 795.0f 1215.0 
23 586.0 f 1129.0 

16 187.0i943.3 
13 429.0f846.0 
11 568.0f787.0 
9 803.8 f711.3 
1 999.6 i 588.7 
6 564.0f521.6 

19 203.01 1065.0 

5 644.2 f 470.0 
4 710.2i380.0 
3 880.41 302.4 
3 153.41233.6 
2 632.1 f 197.4 
2 185.8 f 169.2 
1829.01 127.9 
1 613.5 f 117.7 
1407.1 f 106.4 
1 175.8 i 79.43 
1 028.3 f 67.73 

93 1.05 f 59.92 
837.34 2 56.46 
741.63i47.65 
668.01 i 42.02 
621.04 i40.47 
550.92i 35.95 
501.60i 33.14 
460.98 f 32.04 
432.58i 30.71 
405.12 f 28.91 
375.741 27.49 
344.57 * 24.35 

282.841 14.62 
304.41 i 16.46 
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x,( p ,  L) * one standard deviation 
~~ 

P L = 50 L =  100 1=200 L = 350 

0.568 
0.569 
0.570 
0.571 
0.572 
0.573 
0.574 
0.575 
0.576 
0.577 
0.578 
0.579 
0.580 
0.58 1 
0.582 
0.583 
0.584 
0.585 
0.586 
0.587 
0.588 
0.589 
0.590 
0.591 
0.592 
0.593 
0.594 
0.595 
0.596 
0.597 
0.598 
0.599 
0.600 

69.939 f 2.1 16 
67.443 f 2.066 
64.633 f 1.883 
62.339 * 1.8 19 
60.075 * 1.775 
57.763 f 1.698 
55.3371 1.641 
53.238f 1.570 
51.220* 1.491 
49.4101 1.418 
47.839f 1.380 
46.336* 1.344 
44.952* 1.282 
43.611 * 1.261 
41.767* 1.188 
40.191 * 1.123 
38.832 f 1.078 
37.504f 1.038 
36.538f 1.021 
35.269 f 0.986 
34.217 f0.954 
33.121*0.931 
32.1 15 i0.896 
3 1.220 * 0.879 
30.243 10.840 
29.217 * 0.801 
28.425 f 0.783 
27.617f0.760 
26.685 f 0.742 
25.804f 0.713 
24.971 f0.681 
24.130i0.646 
23.502f0.625 

80.492 f 3.752 
76.349 f 3.351 
72.681 f3.081 
68.268 f 2.767 
65.145 * 2.592 
61.7261 2.433 
58.452 *2.253 
55.842f2.104 
53.703 * 2.065 
51.638f 1.975 
49.367 f 1.854 
47.313f 1.779 
45.509 i 1.707 
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